Autonomous Lawn Mower

-Team sddec18-22

Team Members

-Sam Tinklenberg: Team Leader / Software Development

-Andi Li: Meeting Facilitator/ Software Development

-Bryton Hayes: Test Engineer

-Grant Duncan: Software Lead

-Joel Seaser: Hardware Lead

Problem Statement

The problem we intend to solve concerns the time and financial commitment required to upkeep a well-groomed lawn. There is a long list of reasons a certain individual may not be able to mow their lawn, ranging from lack of time to physical incapabilities. Someone who falls into this category does not have many options to get the job done, without hiring expensive, third-party help.

Client Requests/Requirements

-Program that will efficiently mow entirety of area given a mapped perimeter

-System to map perimeter of the lawn

-Object detection and avoidance

-Mobility through standard lawns

-Power efficiency

-Streamlined interfacing

-GPS module for directional guidance and mapping

Deliverables

-Safe and Affordable autonomous lawnmower.

- Affordable compared to others on market.

- Find and avoid hazards in lawn

- Cut entire lawn on one battery charge.

-Android App to control lawnmower

- Set schedule, control via bluetooth, and see stats.

Operating Environment

-Residential

-Dry Lawn

-Water and dust resistant

-Slight hills

Market Research

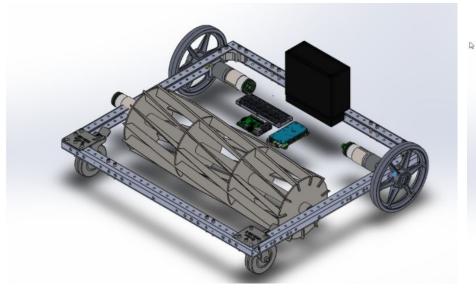
-Cost

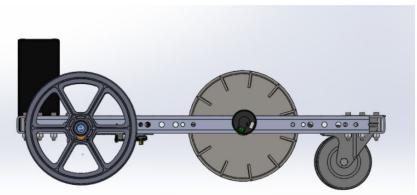
-Cutting area in one charge

-Cumulative Efficiency

-Cutting Width

Basic Implementation


-3 main pieces


- Arduinos

-Android App

-Raspberry Pi

Prototype Sketch

System Block Diagram

System Description

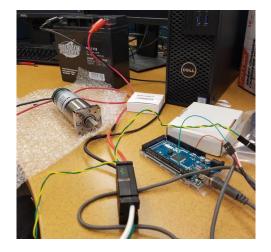
-Arduino Mega controls motors, handles sensor/GPS data, and communicates with Raspberry Pi

-GPS module equipped with WAAS for accurate positioning data

-LIDAR and pressure sensor components for object detection and avoidance

-12V battery and 5V voltage limiter to power system

-Sound sensors and coil for perimeter wire detection


-Arduino micro and motor drivers to control perimeter wire

Testing and Evaluation plan

Software	Hardware	Mobile
-Microcontrollers work with	-All components are	-App be able to connect to
the 3 motors	powered and connected to	the raspberry pi
-Mower is responding	arduino	-Data from the mower
correcting to direction inputs	-Be able to move up 20%	should be shown to the user
-Communication is working	grade hill	-Working log in to server
properly between arduino	-Mow the average size lawn	-Be able to remote control
and raspberry pi	in one charge	the mower

Initial Motor Testing

-Tested and validated 16-bit resolution PWM waveforms for motor control

	Expected Pulse Width (ms)	Expected Duty Cycle (%)	setMotor() value	Measured Pulse Width (ms)	Error in Pulse Width (%)
Full Speed Backward	1	24.414	16000 (15999.71)	.9991	0.09
Half Speed Backward	1.25	30.518	20000 (19999.97)	1.249	0.08
Stopped	1.5	36.621	24000 (23999.57)	1.499	0.06
Half Speed Forward	1.75	42.725	28000 (27999.83)	1.748	0.11
Full Speed Forward	2	48.828	32000 (31999.43)	1.998	0.1

User Interface

	:	≡ Autonomower	Ξ Autonomower Ξ	6:00 PM Sun, April 22	
		Next schedulued mow 5PM, Thursday, Febuary 22nd, 2018			
Autonomower sddec18-22.sd.ece.iastate.edu		< April 2018 >	<u>_</u>	 Autonomower 6:00 PM Rain detected Rain has been detected, you may want to change yo 	
O Weather		S M T W T F S		≠ Tasker 5:54 PM ∨	E Autonomower :
Scheduler		1 2 3 4 5 6 7		Tasker No active profiles.	
History		8 9 10 11 12 13 14	AMES, US 66.22 °F	BLOCK NOTIFICATIONS CLEAR ALL AMES, US	
Manual Control		15 16 17 18 19 20 21 22 23 24 25 26 27 28	few clouds	66.22 °F few clouds	
A Device Settings		29 30			
Communicate		None Scheduled			
<s share<="" th=""><th></th><th></th><th></th><th></th><th></th></s>					
> Send					
		NEW		Markey under	
				Verizon Wireless	

Risks

-Lack of parts available to us for a reasonable price

-Not having weather to permit mowing Fall semester

-Lack of knowledge for mechanical side of the lawn mower

Work Breakdown Schedule

larch	April
ardware: Calculate motor and drivetrain	Hardware: Order some parts needed for the
equirements based on problem and client	lawn mower, set up motor, motor controller
equirements	and GPS, disassemble reel blade
oftware: Start testing the the basic functions	Software: Test the microcontroller with the
f our microcontroller, start making	motors and GPS module
rototype sketch in a CAD Program	Mobile: Connect the app with the
lobile: Begin writing the UI for the app	microcontroller
eq eq off f c	uirements based on problem and client uirements tware: Start testing the the basic functions our microcontroller, start making totype sketch in a CAD Program

2nd Semester Timeline

September	October	November	December
Hardware: Assembly of chassis and perimeter wire setup	Hardware: Refine our mounting mechanism of the lawn mower blade and testing rotation speed	Hardware: Creating the docking station for the lawn mower and implementing object detection	Hardware: Finishing the docking station and fine tuning mower
Software: Basic driving features of			Software: Put finishing touches on
the lawn mower and perimeter wire detection and sensor data	Software: Start working on autonomous code for the mower	Software: Implementing the perimeter wire and GPS with the	the autonomous code
acquisition	Mobile: Move the mower with the	mower	Mobile: Put finishing touches on the app
Mobile: Connect a camera on the	арр	Mobile: Add more functionality to	
mower with the app		the app	

Questions?